Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John C. Barnes ${ }^{\text {a* }}$ and
Timothy J. R. Weakley ${ }^{\text {b }}$
${ }^{\text {a }}$ Carnelley Building, Faculty of Life Sciences, University of Dundee, Perth Road, Dundee DD1 4HN, Scotland, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Oregon, Eugene OR 97403-1253, USA

Correspondence e-mail:
j.c.barnes@dundee.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.040$
$w R$ factor $=0.107$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(18-Crown-6- $\boldsymbol{\kappa}^{6} O$)potassium 2,4-dinitrophenolate 2,4-dinitrophenol

In the title compound, $\left[\mathrm{K}\left(\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{6}\right)\right]\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$, the 18-crown-6-potassium ion is centrosymmetric, with the O atoms from o-nitro groups of the anions above and below the plane. The phenolate O atoms of adjacent anions are connected by short symmetrical hydrogen bonds [2.453 (4) Å], forming chains in the c direction.

Comment

In the title compound, (I), the asymmetric unit contains one anion with half a potassium and half a hydrogen ion, each lying on inversion centres. The potassium ion lies in the plane of the 18 -crown- 6 molecule, with $\mathrm{K}-\mathrm{O}$ distances 2.777 (2), 2.780 (2) and 2.845 (2) \AA. Eightfold coordination of the potassium is completed by O 9 and $\mathrm{O}^{\prime}(-x, 1-y, 1-z)$ from o-nitro groups on either side of the crown [2.756 (2) \AA] (Fig. 1). Phenolate atom O 7 is 2.453 (4) \AA from $\mathrm{O}^{\prime}(-x, 1-y$, $2-z$), with the hydrogen ion, H 30 , at the mid-point $(0,0.5,1)$, giving a typical short symmetrical hydrogen bond. These hydrogen bonds connect the molecules into zigzag chains in the \mathbf{c} direction.

(I)

Received 26 February 2003
Accepted 3 March 2003
Online 14 March 2003

The Cambridge Structural Database (Allen, 2002) lists over 300 structures containing the 18 -crown-6-potassium cation. When two additional ligands are available, as in (I), the cation can be centrosymmetric (e.g. Bryn \& Strouse, 1981). More often, the potassium ion is out of the ring plane and is coordinated by one or two ligand atoms on the side away from the crown. The potassium ion can lie as much as $1.6 \AA$ out of the plane of the crown O atoms (Ziolo et al., 1981), but is usually closer to the plane. For example, in 18-crown-6-potassium propiophenone (Veya et al., 1994), the potassium ion is $0.678 \AA$ out of the plane. In 18-crown-6 [2,6-bis(trifluoromethyl)phenylphosphanyl]potassium (Rudzevich et al., 2002), the potassium ion is $0.465 \AA$ out of the plane. In these examples, the exposed face of the potassium is coordinated by one atom from the anion. In 18-crown-6 potassium picrate (Barnes \& Collard, 1988), the potassium ion is $0.678 \AA$ out of the plane and is coordinated by the phenol O atom and an O atom from an o-nitro group of the same anion at distances of 2.741 (3) and 2.846 (4) \AA, respectively.

Coordination of nitrophenolate anions to potassium ions by O atoms from o-nitro groups occurs in potassium picrate (Palenik, 1972) and in potassium 2,4-dinitrophenolate (Chal-
oner et al., 1998), as well as in 18 -crown- 6 potassium picrate (Barnes \& Collard, 1988). The phenolate O atom is usually involved as well. In (I), the phenolate O atom is not involved, because of the opportunity to form a strong hydrogen bond and restricted access to the potassium ion lying in the ring plane. The plane of the substituted phenyl ring makes an angle of $22.9(1)^{\circ}$ with the plane of the crown. The p-nitro group is twisted by $12.9(4)^{\circ}$ from the plane of the phenyl group compared with 30.2 (3) ${ }^{\circ}$ for the o-nitro group. These values are typical of p - and o-nitro groups of nitrobenzenes (Barnes \& Chudek, 2003). Coordination by three O atoms from nitro groups of two bridging anions in a dimeric complex has also been observed (Barnes et al., 1994).

Experimental

Aqueous solutions of potassium 2,4-dinitrophenolate (0.1 mmol) and 18 -crown-6 (0.1 mmol) were mixed and the product allowed to crystallize.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{KO}_{6}{ }_{6}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{-}$. .-
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=670.63$
Triclinic, $P \overline{1}$
$a=7.489(7) \AA$
$b=10.3156(18) \AA$
$c=10.6773(18) \AA$
$\alpha=83.6340(14)^{\circ}$
$\beta=69.4840(1)^{\circ}$
$\gamma=85.0830(11)^{\circ}$
$V=766.6(2) \AA^{\circ}$
$Z=1$
$D_{x}=1.453 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10.0-12.0^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=298(2) \mathrm{K}$
Lath, yellow
$0.36 \times 0.18 \times 0.09 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: none
3065 measured reflections
2827 independent reflections
1752 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=1.01$
$\theta_{\text {max }}=25.5^{\circ}$
$h \stackrel{\text { max }}{=} \rightarrow 9$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$
3 standard reflections every 300 reflections intensity decay: none

2827 reflections
206 parameters
H atoms: see below
Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

K1-O9			
K1-O9	$2.756(2)$	$\mathrm{K} 1-\mathrm{O} 28$	$2.7801(16)$
$\mathrm{K} 1-\mathrm{O} 25^{\mathrm{i}}$	$2.756(2)$	$\mathrm{K} 1-\mathrm{O} 22$	$2.8452(17)$
$\mathrm{K} 1-\mathrm{O} 25$	$2.7768(16)$	$\mathrm{K} 1-\mathrm{O} 22^{\mathrm{i}}$	$2.8452(17)$
$\mathrm{K} 1-\mathrm{O} 28^{\mathrm{i}}$	$2.7768(16)$	$\mathrm{C} 1-\mathrm{O} 7$	$1.297(3)$
	$2.7801(16)$	$\mathrm{O} 7-\mathrm{H} 30$	1.2266
$\mathrm{O} 9-\mathrm{K} 1-\mathrm{O} 25$			
$\mathrm{O} 9-\mathrm{K} 1-\mathrm{O} 28$	$106.43(6)$	$\mathrm{O} 9-\mathrm{K} 1-\mathrm{O} 22$	$92.87(6)$
$\mathrm{O} 25-\mathrm{K} 1-\mathrm{O} 28$	$91.94(6)$	$\mathrm{O} 25-\mathrm{K} 1-\mathrm{O} 22$	$60.12(6)$

Symmetry code: (i) $-x, 1-y, 1-z$.

The structure of the centrosymmetric unit in (I), showing ellipsoids at the 50% probability level.

Table 2
Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O7-H30 $\cdots \mathrm{O} 7^{\mathrm{ii}}$	$1.226(4)$	$1.226(4)$	$2.453(4)$	180
Symmetry code: (ii) $-x, 1-y, 2-z$				

H atoms attached to C atoms were placed in calculated positions and allowed to ride during the refinement. Isotropic displacement parameters were constrained to be $1.3 U_{\text {eq }}$ of the parent C atom. A difference synthesis showed atom H 30 at the inversion centre $(0,0.5$, $1)$. The coordinates were fixed at this position while the isotropic displacement parameter was allowed to refine.

Data collection: CAD-4/PC (Enraf-Nonius, 1993); cell refinement: $C A D-4 / P C$; data reduction: XCAD4 (Harms \& Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97.

We acknowledge the use of the EPSRC Chemical Database Service (Daresbury Laboratory) (Fletcher et al., 1996) and the Cambridge Structural Database (Allen, 2002).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Barnes, J. C. \& Collard, J. (1988). Acta Cryst. C44, 565-566.
Barnes, J. C. \& Chudek, J. A. (2003). Z. Kristallogr. In the press.
Barnes, J. C., Main, J. \& Paton, J. D. (1994). Acta Cryst. C50, 1247-1249.
Bryn, M. P. \& Strouse, C. E. (1981). J. Am. Chem. Soc. 103, 2633-2635.
Chaloner, P. A., Hitchcock, P. B. \& Sutton, P. G. (1998). J. Chem. Res. 186, 876880.

Enraf-Nonius (1993). CAD-4/PC Diffractometer Software. Version 1.2. EnrafNonius, Delft, The Netherlands.
Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Harms, K. \& Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.
Palenik, G. J. (1972). Acta Cryst. B28, 1633-1637.
Rudzevich, V. L., Gornitzka, H., Miqueu, K., Sotiripoulos, J.-M., PfisterGuillouzo, G., Romanenko, V. D. \& Bertrand, G. (2002). Angew. Chem. Int. Ed. 41, 1193-1195.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1999). PLATON. University of Utrecht, The Netherlands.
Veya, P., Floriani, C., Chiesi-Villa, A. \& Rizzoli, C. (1994). Organometallics, 13, 214-223.
Ziolo, R. F., Gunther, W. H. H. \& Troup, J. M. (1981). J. Am. Chem. Soc. 103, 4629-4630.

